Printing

Pre-treatment for printing using plasma

Pre-treatment for printing has established itself as a standard process in recent years. It is used in all common printing processes such as digital printing, pad printing, screen or offset printing. The adhesion of the printing inks and varnishes to the surface is enormously improved by pre-treatment with plasma, which significantly increases the print quality. The surfaces of many materials such as metals, glass, ceramics and even natural materials such as wood and textiles are often very difficult to print on, but are susceptible to plasma functionalisation. Plasma pre-treatment allows many polymers with typical “non-stick” surfaces to be successfully printed and coated after plasma treatment.

Increase your print quality and at the same time your customer satisfaction by pre-treating with plasma.

Plasma processing achieves the surface functionalization effect through a combination of ultra-fine surface cleaning from organic contaminants, modification of the surface topography and deposition of functional chemical groups.

Plasma functionalization of surfaces can be performed at the atmospheric pressure using air or typical industrial gases including hydrogen, nitrogen and oxygen. It avoids expensive vacuum equipment or wet chemistry, which positively affects its costs, safety and environmental impact. Fast processing speeds further facilitate numerous industrial applications.

Contact angle

Contact angle

Advantages of the pre-treatment for printing with plasma

Plasma cleans, strengthens and chemically functionalizes the surface. All these effects, which are required for improved adhesive bonding, are achieved simultaneously in a single step. The most important thing is that the plasma processing works at atmospheric pressure, since the effect in contrast to the corona process is uniform and potential-free, so that even thermally sensitive surfaces can be pretreated without damage.

Advantages comparing to standard chemical and vacuum plasma cleaning processes:

  • Ultra-fine cleaning, no residues
  • Better ink adhesion
  • High resistance to ageing, handling and weathering
  • Excellent colour brilliance
  • Gentle, non-destructive surface treatment
  • No wet chemistry
  • Air or cheap non-toxic working gases
  • Environmental friendliness
  • No expensive vacuum equipment
  • Fast processing speeds
  • Easy integration into existing production lines

Improvement of adhesion of paints by plasma treatment

Upon contact with the treated surface, the chemically active cold atmospheric plasma initiates a multitude of physical and chemical processes. The main reaction agents are highly reactive short-lived neutral chemical species, which are produced by the plasma in large quantities. Additionally, when the electric discharge touches the treated surface, the latter is also irradiated by VUV light and bombarded by the energetic electrons and ions. Although the quantities of the charged particles are small, their highly reactive nature strongly enhances the effects of the plasma. The following processes contribute to the promotion of the adhesion by the plasma treatment:

  • Plasma cleans the surface. Plasma breaks organic bonds of heavy organic molecules producing lighter and more volatile molecules evaporating from the surface. Further, reactive chemical species oxidize organic contaminants forming carbon oxides and water vapor. As the plasma breaks contaminants turning them into vapor, no residues are left on the surface, leaving the latter in the ultra-fine clean state.
  • Plasma strengthens the surface. With the increased treatment strength, plasma removes nm-scale weak surface layers having the lowest molecular weight. The bonds of the polymers, broken by the plasma, cross-link forming a stronger surface layer.
  • Plasma deposits chemically functional groups and increases the surface wettability. By reacting with the polymer molecules, plasma species deposit polar OH and ON groups on the cleaned surface significantly increasing the energy of the surface and its wettability. As the results, the subsequently applied paint wets the surface efficiently and fills the microstructures due to the capillary action.

Requirements for strong, high quality adhesive bonding

Strong high quality adhesive bonding between dissimilar materials, such as paint and a plastic substrate can be formed by fulfilling the following requirements:

  • Ultra-clean surface. The surface has to be free from contaminants. Even visually clean surfaces can contain contaminants such as adsorbed organics, water, monomers, release agents, oils. Ultra-fine clean state is difficult to achieve with conventional cleaning techniques which often leave residues.
  • Strong surface. In the case of plastic polymers, formed by molding and extrusion processes, the uppermost nm-width surface layer consists of low molecular weight and not cross-linked  polymer molecules. This surface layer is mechanically weak. Removing this weak layer and cross-linking the polymer molecules in the remaining layers improves the adhesion strength.
  • Wettable surface. For the adhesive to cover (wet) the surface efficiently, the surface energy of the adhesive should be lower than that of the surface they should be bonded to. However, mechanically strong adhesives and paints usually have high surface energy. This poses a serious problem for their use with most plastic polymers, which typically have very low surface energy.
  • Chemically functional surface. On the molecular level, the adhesion between two materials is mediated by either electric attraction between the surface molecules and the molecules of the adhesive, or by their chemical bonds. The former type, called dispersive adhesion, is strong when polar molecules cover the surface. While surfaces of plastic polymers are typically non-polar, formation of the layer of polar molecules functionalizes the surface. This is sufficient for more printing applications. The latter type, called chemical adhesion, forms the strongest joints. However, chemical bonding between dissimilar materials in not possible. An intermediate layer of molecules having chemical affinity to both, the surface and the adhesive, functionalizes the surface enabling very strong chemical bonding.

Cold atmospheric plasmas

Plasma is a partially ionized gas. Electric arcs, dielectric barrier, corona and piezoelectric direct discharges ionize gases at atmospheric pressures creating plasmas. The charged particles – electrons and ions – accelerate to very high energies. Only a small fraction of the gas molecules is turned into the energetic electrons and ions; the rest of the gas remains neutral and cold. In the case of the piezoelectric direct discharge, its temperature reaches only 50 C. In the case of the arc discharge, the arc volume reaches temperatures of 6.000 – 12.000 C. However, after leaving the discharge volume, the gas cools quickly to 250-450 C. These temperatures do not damage the surfaces by fast processing speeds. While the plasma remains cold, the very energetic electrons and ions collide with the gas molecules producing large quantities of short-lived chemical species, such as atomic H, N and O species, OH and ON radicals, ozone, nitrous and nitric acids, as well as various other molecules in metastable excited states. They make this plasma chemically very active.

Plasma treatment products by Relyon Plasma GmbH

To cover a wide spectrum of industrial, medical and laboratory applications, Relyon Plasma GmbH developed a series of plasma processing products designed to improve adhesive bonding, such as printing, coating, painting and gluing:

Plasma application: Pre-treatment for printing with Plasmabrush PB3

 

  • Plasmabrush® PB3 is a universal highly reliable plasma generator based on our proprietary Pulsed Atmospheric Arc (PAA) Technology. With its power of 1 kW, very compact dimensions and exceptional long-time stability, this generator is well suited for integration into high-speed industrial production lines.

 

Plasma application: Pre-treatment for printing with Plasmacell

  • Plasmacell P300 is a complete “turn-key” plasma treatment solution. It includes all components required to establish an effective plasma processing conforming to industry standards and regulations: plasmabrush PB3 mounted on a programmable high-speed X-Y-Z positioning system, compressed air supply and exhaust filtration systems. Enclosures with electronics and the treatment chamber, together with an electronic display, create a clean, safe and efficient working environment, ready for operation.

Plasma application: Pre-treatment for printing with Plasmatool

  • Plasmatool is a handheld instrument based on plasmabrush PB3, ergonomically optimized for safe manual operation. Together with a portable module including a high voltage supply, an air compressor and controlling electronics, it enables highly efficient plasma processing of large structures, areas that are difficult to access, or where automation is not possible or practical.

 

Plasma application: Pre-treatment for printing with Piezobrush PZ2

  • Piezobrush® PZ2 is a low power handheld plasma generator, which is based on our proprietary Piezoelectric Direct Discharge (PDD) Technology. It enables manual plasma processing work in laboratories. It can create corona and dielectric barrier discharges and apply them for precision ultrafine plasma cleaning and chemical functionalization of small components.

 

 

 

Treatable materials

Relyon Plasma Products

Relyon Plasma Publications

Contact
close slider

How did you hear about us? Online researchSocial mediaProfessional journalExhibition / EventReferral